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Abstract 

The interpretation of Cremer & Pople parameters 
presents more intricacies than is generally believed. The 
puckering Q depends on bond lengths as well as on tp 
and 0. Part of the interdependency is linked to one's 
conceptions of standard geometries, pseudorotation 
and inversion processes. A correct comparison of 
conformation from Cremer & Pople parameters can 
only be given per class of rings and requires the a priori 
definition of standard conformations. 

Introduction 

The various conformations of six-membered rings are 
nowadays often characterized with the help of polar 
coordinates Q, t9 and tp (Cremer & Pople, 1975). Using 
this set of coordinates, all types of rings with a 
puckering Q can be mapped out on the surface of a 
sphere with radius Q (see e.g. Boeyens, 1978). The 
poles at 0 = 0 or 180 ° correspond to the rigid chair 
conformations, while the equator, at 0 = 90 °, corre- 
sponds to the pseudorotational path of the flexible 
boat/twist-boat family. A specific form on the equator 
is further characterized by the pseudorotational angle 
~0. Other symmetrical forms, such as envelope (or sofa) 
and screw-boat (or 1,3-diplanar form), are located at 
specific points on the northern or southern hemisphere. 

A logical nomenclature as well as a well defined 
atomic numbering scheme has been proposed by 
Boeyens (1978). 

Since the Cremer & Pople parameters describe 
precisely those properties of a ring in which researchers 
in the field of conformational analysis are interested, it 
is tempting to use them in comparative geometrical 
studies. However, it has been pointed out (Zefirov & 
Palyulin, 1980) that a comparison of ring Q's con- 
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taining different bond lengths can lead to conclusions 
about their puckering which are inconsistent with other 
criteria accepted in stereochemistry. 

Here we report some further limitations to the use of 
the Cremer & Pople parameters. In particular, we 
investigated whether the Cremer & Pople parameters 
can demonstrate generally, and quantitatively that a 
given ring is more puckered or that it is a more 'perfect' 
boat (or chair) than another ring. 

The puckering amplitude 

The Cremer & Pople total puckering amplitude Q for a 
six-membered ring is defined by: 

6 
a2= y t], 

j=l 

where tj are the perpendicular atomic displacements 
from a unique mean plane through the ring, as defined 
by equations (5)-(7) in Cremer & Pople (1975). 

To study the behaviour of Q during conformational 
changes a 'standard' form must be chosen. In our 
calculations, a six-membered ring with equal valence 
angles, ct, and unit bond lengths was considered. Petit 
(1983) has shown that, if only torsion angles 09 change 
during pseudorotation, the puckering Q for a true-boat 
is given by: 

Q(B) = cos 2 -  - cos 2 a 
2 

and for a twist-boat by: 

Q(TB) = [cos a + V ~ sin a -  1] 1/2. 

Thus, not only does Q vary linearly with the bond 
lengths, but it also decreases with increasing values of 
a. The formulae show that for all non-planar rings 
Q(TB) > Q(B) (see Table 1). Calculations, employing 
an algorithm devised by Dillen & Geise (1980), show 
that intermediate conformations have intermediate Q 
values. 
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Table 1. Q values as a function of  a for true-boat and 
twist-boat forms with equal valence angles and unit 

bond lengths 

Table 2. Q values along the line ~p = 0 

All forms have C s symmetry:  10911 = 10941, 10921 = 10931, I0951 = 
10961 = 60 °. ~ = 109.47 ° and bonds have unit length. 

a Q(B) Q(TB) u Q(B) Q(TB) 

120 0.0000 0.0000 108 0.5774 0.5816 
118 0.2446 0.2446 106 0.6177 0.6240 o~5 /~  
116 0.3438 0.3441 104 0.6537 0.6623 
114 0.4182 0.4190 102 0.6859 0.6973 
112 0.4794 0.4810 100 0.7146 0.7294 ~ 1  
110 0.5319 0.5344 90 0.8165 0.8556 
109.47 0.5443 0.5474 

i 

M 

The ~p dependency of the puckering, i.e. the variation I09,1 t092t 
of Q along the equator, is depicted in Fig. 1 (a). The 0 60 
statement that pseudorotation can be described as a 1.72 55.15 
motion involving a change in ~o at constant puckering 4.28 48.74 

7.63 41.24 
amplitude can no longer be kept for standard forms 12.28 31.82 
with fixed valence angles. Disparities between Q(B) and 16.80 23.31 
Q(TB) run as high as 4.5% at a = 90 ° and in- 20.02 17.47 

25.39 8.01 
crease even further when higher-membered rings are 30.0 0 
considered. 34.62 8.01 

Next, we investigate the consequences of changing 0 39.98 17.47 41.86 20.85 
at constant ¢p, i.e. the change of a chair to a boat-like 43.21 23.31 
conformation along a meridian. Two paths are special. 47.72 31.82 

52.37 41.24 
At ~p = 0 ° (+ n60°), the chair form changes via the 55.72 48.74 
envelope into a true-boat, whereas at ~o = 90 ° (+ n60 °) 58.28 55.15 
the chair changes via the half-chair and the screw-boat 60 60 
forms into the twist-boat conformation. During these 
processes we keep bond lengths fixed at unit length, but 
allow the valence angles to vary in order to keep ~o at the 
selected value and to retain symmetry. All forms on the 
~p = 0 ° meridian have C s symmetry, i.e. 10)11 = 10941, 

10921 = 10931 and 10951 = Io)61 = 60 °. 
Conformations on the ~o = 90 ° meridian have C2 

symmetry, i.e. I0)11 = I0)31 and I0)41 = I0)61. 
Numerical results are given in Tables 2 and 3. In 

Figs. l(b) and l(c) the puckering Q is plotted as a 
function of 8, resulting in curves which deviate strongly 
from a circle, the ideal Cremer & Pople curve. 

a 0 ( ° )  * Q Remarks 

109.47 90 0.5443 Boat form 
112.0 88.4 0.5263 
115.0 86.0 0-5017 
118.0 82.8 0.4731 
121.0 78.1 0.4388 
123.0 73.2 0.4103 
124.0 69.4 0.3925 
125.0 62.6 0.3677 
125.264 56.1 0.3509 Envelope (=sofa) form 
125.0 48.9 0.3388 
124.0 39.8 0.3315 
123.46 36.4 0.3310 Minimum-Q form 
123.0 33.9 0.3313 
121.0 25.3 0.3372 
118-0 15.9 0.3526 
115.0 9-1 0.3713 
112.0 3.7 0.3912 
109.47 0 0.4082 Chair form 

• Cremer & Pople 0 parameter. 

It is noteworthy that the minimal value of Q is not 
found at one of the more symmetric forms. 

The end points of the Q vectors as a function of ¢p 
and 0, presented in Fig. 2, map out a three-dimensional 
surface that is anything but a sphere. 

It may seem that a logical way to improvement may 
be to change the definition of ring puckering into one 
based on the angular characteristics of the ring. 
Various approaches are possible using endocyclic 
torsion angles. 

BOAT 
TWIST~BOAT 

2/ 

CHAIR ¢ 

BOAT 

CHAIR 
/ 

LF-CHAIR 
SCREW-BOAT 

/ / ~  ,~, TWIST-BOAT 

(a) (b) (c) 
Fig. 1. Cross sections through the Cremer & Pople globe ( c f  Fig. 2) for an idealized ring with unit bond lengths. See text for valence 

angles. (a) Section along the equator, 0 = 90 °. Q is given as a function of  ~ for the change from true-boat forms to twist-boat forms 
(pseudorotation process). (b) Section along the meridian, ~a = 0 °. Q is given as a function of  0 for the change from a chair form to a 
twist-boat (inversion process). (c) Section along the meridian, ~a = 90 °. Q is given as a function of/9 for the change from a chair form to 
a true-boat (inversion process). 
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Table 3. Q values along the line tp = 90" 

All forms have C2 symmetry: I to~l = 10931 , 10941--10961.0= 109-47 ° 
and bonds have unit length. 

, 

Iwll Io)21 I~al 1~51 ct 0 ( ° )  * Q Remarks  

33.16 70.64 33.16 70.64 109,47 90 0.5474 Twist-boat 
27.82 63.88 36.12 72.54 112.0 86.8 0.5237 
20.28 53.91 39.85 74.48 115.0 82.1 0.4916 
10.22 40.03 44.16 75.98 118.0 75.1 0.4525 
0 25,48 47.90 76.44 119.94 67.02 0.4184 Screw-boat 

10.40 10.40 51.17 76.00 120.834 57.7 0.3907 
17.54 0 53.16 75.19 120.835 50.7 0.3766 Half-chair 
27.45 14.43 55.59 73.38 120.0 39.9 0.3647 
33.69 23.43 56.91 71.81 118.957 32.6 0.3625 Minimum-Q 
37.96 29.55 57.71 70.51 118.0 27.5 0.3636 
47.77 43.35 59.19 66.73 115.0 15.4 0.3749 
54.99 53.26 59.85 60.07 112.0 6.3 0.3919 
60 60 60 60 109-47 0 0.4082 Chair 

* Cremer & Pople 0parameter. 

About 15 years ago Buys & Geise (1968) noted that 
along the equator the oJ s can be approximated by: 

O ) j - -  ('/)max COS + withj  = 1, 2 , . . . ,  6, 

where COma x presents itself as the definition of puckering. 
However, its range of applicability is very limited. Diez, 
Esteban, Guilleme & Bermejo (1981) proved that only 
for equilateral polygons is there one maximum torsion 
angle COma x and one phase angle tp. For non-equilateral 
six-membered rings there are in principle six maximum 
torsion angles and six phases. Another definition of 
puckering, proposed by Zefirov & Palyulin (1980) is: 

$ 2 =  ~. sin z . 
j = l  

Using the results from Tables 2 and 3, it is easily 
verified that for an idealized ring (a = 109.47 ° and unit 

Fig. 2. The Cremer & Pople globe, presented as the end points of  Q 
vectors as a function of ~0 and 0 for an idealized ring system (unit 
bond lengths, see text for further details). 

lengths) it holds that S(chair) = 1.500, S(boat) = 
1.000 and S(twist-boat) = 0.994. Thus, S is, just as Q, 
a function of <p and 0, but independent of bond lengths. 

Finally, a definition of puckering can be based on 
endocyclic valence angles, e.g. via 

[ G = 1 0  1 -  720J" 

G is independent of bond lengths and for idealized 
systems independent of ~, but not of 0. 

The parameters ~ and 0 as determinants of ring shape 

From the above it will be clear that there is no 
straightforward relation between the conformation of a 
ring and the corresponding Cremer & Pople param- 
eters. Even for idealized systems the conformational 
map deviates strongly from a sphere. Of course, other 
models of the chair to boat-like conversion process can 
be constructed. The conformers met along the meri- 
dians will be different from those given above by having 
more or less symmetry. Each of such models will yield 
a globe (Q surface) slightly different from that of Fig. 2. 

This lack of a one-to-one relation between the 
conformations of a ring and their representation by the 
Cremer & Pople coordinates may lead to ambiguities in 
interpretation, as in the examples below. 

Occasionally it happens that an experimental set of 
X-ray coordinates yields ~ = 0 = 0 °. From this result, 
the authors then characterize the ring in question as a 
perfect chair, although the bond lengths and angular 
characteristics show that the ring has no true symmetry 
(Fig. 3a). Also, the two-dimensional polar projection of 
the Cremer & Pople globe is sometimes used for 
classification purposes in sugar chemistry (Kothe, 
Luger & Paulsen, 1979). The poles are taken to 
represent the ideal, perfect chair forms, while ideal boat 
and twist-boat forms are depicted at equidistant points 
along the equator. In these examples, the definitions of 
ideal, perfect forms are based on ¢ and 0. Such a basis 
of definition is not without danger. The Cremer & 
Pople treatment of a six-membered ring is obviously a 
projection of 12 degrees of freedom onto three 
parameters. Thus many slightly different con- 
formations may correspond to a certain set of Q, ~ and 
0. It is evident that if standard or ideal geometries are 
defined by bond lengths, valence and torsion angles the 
corresponding Cremer & Pople parameters may well be 
different from nice, round numbers. Moreover, thdse 
numbers are not transferable from system to system. 

To elucidate our point we take the perhydropyran 
ring as an example. Fig. 3(a) gives the conformation of 
the ring as observed experimentally in tX-L-xylo- 
pyranose (Takagi & Jeffrey, 1979). A definition of the 
'ideal' form based on symmetry (e.g. averaging the 
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C-O : t/,26 C - 0:1426 

C-C : 1.524 C -C .152z~, 

"S2'l I ''s28 [ . . . . . .  I . . . . . . .  I I . . . .  

1 .521" , v ,~523  - 5 4 . ~ 5  - 53 4 "~ , , , , ~3 l .  - 5 0 ~ . 4  

(a) (b) (c) 
o (A) 0s7s 0sw 0sv~ 
~o(°) 0 0 0 

O(°) 0 2 6 

Fig. 3. Forms of the ~C 4 chair of perhydropyran: (a) observed by 
Takagi & Jeffrey (1979) in Ct-L-xylopyranose; (b) after partial 
symmetrization (see text); (c) after symmetrization of bonds and 
valence angles (see text). 

bond lengths and five valence angles) corresponds to 
the ~0 and 0 values of Fig. 3(b). Incorporation of all 
valence angles into the symmetrization (Fig. 3c) causes 
0 to deviate further from zero. 

Note that the computational scheme (Dillen & 
Geise, 1980) to generate the specified forms ensures 
that the rings are closed. Which of the tetrahydro- 
pyran rings of Fig. 3 is the most perfect one is a matter 
of preference and remains the responsibility of the 
investigator. 

Conclus ion  

Our analysis has shown that the interpretation of 
Cremer & Pople parameters is not as straightforward 
as is sometimes believed. With this coordinate system it 
is indeed possible to map out conformations with a 
given Q on the surface of a sphere. However, even for 
idealized molecules, each conformation has its own, 
particular value of Q. The conformational map for a 
real molecule will be similar, but not equal, to that of 
Fig. 2. 

The inconsistency between conformational descrip- 
tors based on angular properties (Ogmax, S, G) and the 
Cremer & Pople-based descriptors arises because only 
for infinitesimal displacements of a regular polygon 
from planarity is there a direct linear relationship 
between torsion angles and displacements. This con- 
dition, which was stated by Dunitz (1972) as well as by 
Cremer & Pople (1975), is seldom met in actual ring 
systems. Once this is appreciated, the Cremer & Pople 

three-parameter description of a six-membered ring 
remains very attractive and convenient, despite its 
limitations. In fact, the Cremer & Pople method is to 
date the only systematic way of describing ring 
conformations regardless of ring size, and is the only 
scheme that, given 0, tp and Q, enables one to 
recalculate exactly the displacements tj of the ring 
atoms from the Cremer & Pople mean plane. It is, 
however, obvious that one cannot in general recon- 
stitute the complete conformational geometry from a 
given set of Q, ~0 and 0. The limitations in interpretative 
power for classification purposes are related to the fact 
that 12 degrees of freedom are compressed into three 
parameters. On the other hand a three-parameter 
system is convenient and pictorial. Other three-param- 
eter systems may be designed, which may seem to have 
improvements on details, but their limitations will 
remain essentially the same. 

A correct, quantitative comparison of con- 
formations can only be given for one particular class of 
rings (e.g. tetrahydropyran derivatives) at a time, after 
a set of standard conformations is defined. The 
restriction, one class at a time, is to ensure the 
usefulness of Q by introducing as little variation as 
possible in bond lengths between the members of the 
class. The a priori  definition of standard geometries is 
necessary to locate the appropriate points of reference 
in the two-dimensional projection of the Cremer & 
Pople globe. 

In all other cases the interpretation of Cremer & 
Pople parameters cannot go beyond semi-quantitative 
statements. 
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